Search results for "finite element modelling"

showing 10 items of 12 documents

Simplified equivalent finite element modelling of concrete-filled steel tubular K-joints with and without studs

2022

Concrete Filled Steel Tubular (CFST) K-joints employed for truss structures gained high interest in the last years due to their widespread use in engineering practice. The overall performances of these joints can be efficiently improved by using steel studs welded in the inner surface of the steel chord filled with the concrete, avoiding punching shear failure, and improving the overall strength and ductility. However, a reliable prediction of the structural behavior of the joints is outmost of importance for the assessment of the capacity of new and existing structures, and there are no standardized design methods nowadays. In this paper, the structural performances of CFST K-joints with a…

Settore ICAR/09 - Tecnica Delle CostruzioniSimplified equivalent modellingK-jointsSteel studsConcrete filled steel tubes (CFST); Finite element modelling (FEM); K-joints; Simplified equivalent modelling; Steel studsConcrete filled steel tubes (CFST) Finite element modelling (FEM) K-joints Simplified equivalent modelling Steel studsConcrete filled steel tubes (CFST)Civil and Structural EngineeringFinite element modelling (FEM)
researchProduct

Predicting stiffness and strength of birch pulp:Polylactic acid composites

2016

This paper studies failure of birch pulp–polylactic acid composites. Stiffness and strength are calculated using the theory of short fibre composites and the results are compared to experimental data. The results differed from the experimental values by 0–6%. With less aligned fibres the short fibre theory is not feasible. The performance of the 40 wt% birch pulp – polylactic acid composite is predicted with X-ray microtomography based finite element modelling, and the results are compared with experiments. Stiffness results differed from experiments by 1–17% . By adding into the models a third material phase representing the interface between the fibres and the matrix, the stress–strain c…

microtomographyMaterials scienceComposite number02 engineering and technologyengineering.materialshort fibre composites strengthchemistry.chemical_compoundfibres0203 mechanical engineeringPolylactic acidimage analysisMaterials Chemistrymedicinepolymer matrix compositesComposite materialta216finite element modellingProperTunekuidutta214modelta114Mechanical EngineeringPulp (paper)Wood-plastic compositeStiffness021001 nanoscience & nanotechnologyMicrostructureFinite element method020303 mechanical engineering & transportschemistryshort fibre compositesMechanics of Materialskuva-analyysiCeramics and Compositesengineeringmedicine.symptomelastic properties0210 nano-technologystrengthelastiv properties
researchProduct

A macroscale FEM-based approach for selective laser sintering of thermoplastics

2017

A numerical approach to model the selective laser sintering (SLS) of polypropylene is proposed. A 3D thermal model was developed and thus enables the prediction of the temperature fields and the extension of the sintered area in the powder bed taking into account the phase change during multiple laser passes. Powder–liquid, liquid–solid and solid–liquid phase changes were modelled during the SLS and the subsequent cooling processes. Then, a 3D thermomechanically coupled model was set up based on the temperature results of the thermal model in order to predict the distortion of the produced parts after cooling down. Different pre-heating temperatures were considered, highlighting their…

0209 industrial biotechnologyMaterials scienceAdditive manufacturing02 engineering and technologyIndustrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundPhase change020901 industrial engineering & automationlawDistortionPhase (matter)Phase changeComposite materialPolypropyleneMechanical EngineeringComputer Science Applications1707 Computer Vision and Pattern Recognition021001 nanoscience & nanotechnologyLaserFinite element methodFinite element modellingComputer Science ApplicationsSelective laser sinteringSelective laser sinteringchemistryControl and Systems EngineeringPolypropylene0210 nano-technologySoftwareCooling downThe International Journal of Advanced Manufacturing Technology
researchProduct

A numerical model for pre-monitoring design of historical colonnade courtyards: The case study of chiaramonte palace in palermo

2016

This paper proposes a numerical model that can be used for theoretical and experimental dynamic characterization of historical colonnade courtyards. Such an architectural element appears often in buildings of historical heritage and, especially under seismic excitation, it represents the most vulnerable structural part. Therefore, it is very important to have reliable as well as simple models available for vulnerability analysis, to evaluate different reinforcing systems if needed, or to plan dynamic characterization tests or monitoring campaigns, as in the present case. Chiaramonte Palace, a wonderful example of the historical heritage of Palermo, is investigated as case study. Firstly, a …

0211 other engineering and technologiesDynamic characterization02 engineering and technologyBuilding and ConstructionHistorical heritageArchaeologyCourtyards codelingFinite element modellingCalibration procedure020303 mechanical engineering & transportsSignal analysis0203 mechanical engineering021105 building & constructionColonnadeHistorical heritageGeology
researchProduct

Three-dimensional analysis of load transfer micro-mechanisms in fibre/matrix composites

2009

International audience; This study gives a detailed analysis of load distributions around fibre breaks in a composite. In contrast to other studies reported in the literature, the analysis considers different configurations of composite damage from the failure of a few to the failure of many fibres. The model considers three types of matrix behaviours (elastic, elastic–plastic and viscoelastic) with or without debonding at the broken fibre/matrix interface. In this way, the usual limitations of the finite element approach are overcome so as to take into account the number and interactions of broken fibres whilst maintaining an evaluation of the various fields (stresses in particular).

Three dimensional analysisMaterials scienceFibre matrix interactionFinite element approachComposite number[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General EngineeringDamage accumulation02 engineering and technologyUnidirectional composites021001 nanoscience & nanotechnologyViscoelasticityFinite element modellingMatrix (mathematics)020303 mechanical engineering & transports0203 mechanical engineeringDebondingLoad transferCeramics and Composites[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Micro mechanismComposite material0210 nano-technology
researchProduct

Dissipative connections of rc frames with prefabricated steel-trussed-concrete beams

2020

In the last thirty years, Hybrid Steel-Trussed Concrete Beams (HSTCBs) have been widely used in civil and industrial constructions and, therefore, their mechanical performance must be evaluated with the aim of guaranteeing adequate dissipation of the seismic energy particularly in the beam-to-column joints. However, one of the most frequent peculiarities of HSTCBs is that of using their own steel joist to cover large spans with reduced depth and, in the case of traditional beam-to-column connections, this requires large amount of steel reinforcement inside the panel zone, often made with large diameter rebars. These characteristics make both the panel zone and the beam end potentially vulne…

Non-linear time history analysisCyclic behaviour of joints; Finite element modelling; Friction dampers; Hybrid steel-trussed-concrete beams; Non-linear time history analysisCyclic behaviour of jointsFriction dampersHybrid steel-trussed-concrete beamsFinite element modelling
researchProduct

Finite element modelling of slipage between FRP rebar and concrete in pull-out test

2014

The paper presents numerical results of direct pull-out test of glass fiber-reinforced polymer (GFRP) rebars embedded in concrete. Rebars of three different cross-sections are considered: circular without longitudinal ribs and with two and four ribs. The design analyses of the rebar configurations embedded in concrete are investigated by the 3D finite element method (FEM), which takes into account the non-linearity using ANSYS software. The results of the numerical model with two ribs were compared with the experimental results. Then, the effect of different rebar geometries to the load-slip pull-out curves was studied. It is concluded that the influence of rib height and width on the pull-…

Engineeringlawbusiness.industryglass fiber-reinforced polymer (GFRP) rebar finite element modelling pull-out test load-slip behaviour ANSYSRebarAnsys softwareStructural engineeringComposite materialFibre-reinforced plasticbusinessFinite element methodlaw.inventionThe International Scientific Conference „Innovative Materials, Structures and Technologies"
researchProduct

Numerical modelling of the tensile behaviour of BFRCM strips

2019

This paper aims at investigating the tensile behaviour of basalt fibres on cementitious matrix for the strengthening of masonry structures. The use of Basalt Fibre Reinforced Cementitious Matrix (BFRCM) is favourably considered by the scientific community because it represents a natural composite material with high compatibility with stone and masonry substrate. The study is developed through the generation of Finite Element (FE) models capable of reproducing the tensile behaviour of BFRCM strips with different number of layers of grid. For the scope, the micro-modelling approach is adopted assuming different levels of detail for the simulation of the interface constitutive behaviour. Fibre…

Basalt GridFinite Element ModellingBasalt Grid Damage Finite Element Modelling FRCM Interface Tensile behaviourTensile behaviourMaterials scienceInterface (Java)Mechanical EngineeringBasalt Grid; Damage; Finite Element Modelling; FRCM; Interface; Tensile behaviour02 engineering and technologySTRIPSInterface021001 nanoscience & nanotechnologyFRCMlaw.invention020303 mechanical engineering & transportsDamage0203 mechanical engineeringMechanics of MaterialslawUltimate tensile strengthGeneral Materials ScienceComposite material0210 nano-technology
researchProduct

Contribution to the modeling of microstructural corrosion on aluminium alloys : definition of a methodology to study the bimetallic corrosion phenome…

2008

The initiation and the propagation of aluminum alloys microstructural corrosion is mainly based on the bimetallic corrosion phenomenon. This type of corrosion is caused by galvanic coupling at a local scale between the different phases contained in the alloy. The description of the localized corrosion phenomenon has been largely studied. Their complexity can explain why they are so difficult to predict by the way of numerical tools and why the works that have been done on this subject are so scarce. The present thesis brings a new contribution to this field by suggesting a methodology based on the complementary use of local electrochemical techniques and the finite element simulation of bim…

électrochimie locale[CHIM.MATE] Chemical Sciences/Material chemistryAluminum corrosionSVETAutomotiveCapillary microcellAlliages d'aluminium[SPI.MAT] Engineering Sciences [physics]/MaterialsAluminum alloysFinite element modellingLocal electrochemistryIntergranular corrosionMicrogalvanic effectCorrosion microgalvaniqueCorrosion IntergranulaireMicrocellModélisation par éléments finis
researchProduct

Influence of wall-to-floor connections and pounding on pre- and post-diction simulations of a masonry building aggregate tested on a shaking table

2023

AbstractThis paper presents numerical simulations within the frame of the project SERA—AIMS (Seismic Testing of Adjacent Interacting Masonry Structures). The study includes blind pre-diction and post-diction stages. The former was developed before performing the shaking table tests at the laboratory facilities of LNEC (Lisbon), while the latter was carried out once the test results were known. For both, three-dimensional finite element models were prepared following a macro-modelling approach. The structure consisted of a half-scaled masonry aggregate composed by two units with different floor levels. Material properties used for the pre-diction model were based on preliminary tests previou…

Settore ICAR/09 - Tecnica Delle CostruzioniGeophysicsBuilding and ConstructionBuildings interaction Pounding Wall-to-floor connection Incremental dynamic analysis Nonlinear time history analysis finite element modelling Stone masonry aggregateGeotechnical Engineering and Engineering GeologyCivil and Structural EngineeringBulletin of Earthquake Engineering
researchProduct